39 research outputs found

    RoboCup 2D Soccer Simulation League: Evaluation Challenges

    Full text link
    We summarise the results of RoboCup 2D Soccer Simulation League in 2016 (Leipzig), including the main competition and the evaluation round. The evaluation round held in Leipzig confirmed the strength of RoboCup-2015 champion (WrightEagle, i.e. WE2015) in the League, with only eventual finalists of 2016 competition capable of defeating WE2015. An extended, post-Leipzig, round-robin tournament which included the top 8 teams of 2016, as well as WE2015, with over 1000 games played for each pair, placed WE2015 third behind the champion team (Gliders2016) and the runner-up (HELIOS2016). This establishes WE2015 as a stable benchmark for the 2D Simulation League. We then contrast two ranking methods and suggest two options for future evaluation challenges. The first one, "The Champions Simulation League", is proposed to include 6 previous champions, directly competing against each other in a round-robin tournament, with the view to systematically trace the advancements in the League. The second proposal, "The Global Challenge", is aimed to increase the realism of the environmental conditions during the simulated games, by simulating specific features of different participating countries.Comment: 12 pages, RoboCup-2017, Nagoya, Japan, July 201

    Gliders2d: Source Code Base for RoboCup 2D Soccer Simulation League

    Full text link
    We describe Gliders2d, a base code release for Gliders, a soccer simulation team which won the RoboCup Soccer 2D Simulation League in 2016. We trace six evolutionary steps, each of which is encapsulated in a sequential change of the released code, from v1.1 to v1.6, starting from agent2d-3.1.1 (set as the baseline v1.0). These changes improve performance by adjusting the agents' stamina management, their pressing behaviour and the action-selection mechanism, as well as their positional choice in both attack and defense, and enabling riskier passes. The resultant behaviour, which is sufficiently generic to be applicable to physical robot teams, increases the players' mobility and achieves a better control of the field. The last presented version, Gliders2d-v1.6, approaches the strength of Gliders2013, and outperforms agent2d-3.1.1 by four goals per game on average. The sequential improvements demonstrate how the methodology of human-based evolutionary computation can markedly boost the overall performance with even a small number of controlled steps.Comment: 12 pages, 1 figure, Gliders2d code releas

    A Mechanistic View of the Role of E3 in Sumoylation

    Get PDF
    Sumoylation, the covalent attachment of SUMO (Small Ubiquitin-Like Modifier) to proteins, differs from other Ubl (Ubiquitin-like) pathways. In sumoylation, E2 ligase Ubc9 can function without E3 enzymes, albeit with lower reaction efficiency. Here, we study the mechanism through which E3 ligase RanBP2 triggers target recognition and catalysis by E2 Ubc9. Two mechanisms were proposed for sumoylation. While in both the first step involves Ubc9 conjugation to SUMO, the subsequent sequence of events differs: in the first E2-SUMO forms a complex with the target and E3, followed by SUMO transfer to the target. In the second, Ubc9-SUMO binds to the target and facilitates SUMO transfer without E3. Using dynamic correlations obtained from explicit solvent molecular dynamic simulations we illustrate the key roles played by allostery in both mechanisms. Pre-existence of conformational states explains the experimental observations that sumoylation can occur without E3, even though at a reduced rate. Furthermore, we propose a mechanism for enhancement of sumoylation by E3. Analysis of the conformational ensembles of the complex of E2 conjugated to SUMO illustrates that the E2 enzyme is already largely pre-organized for target binding and catalysis; E3 binding shifts the equilibrium and enhances these pre-existing populations. We further observe that E3 binding regulates allosterically the key residues in E2, Ubc9 Asp100/Lys101 E2, for the target recognition

    Temporo-Spatial Dynamics of Event-Related EEG Beta Activity during the Initial Contingent Negative Variation

    Get PDF
    In the electroencephalogram (EEG), early anticipatory processes are accompanied by a slow negative potential, the initial contingent negative variation (iCNV), occurring between 500 and 1500 ms after cue onset over prefrontal cortical regions in tasks with cue-target intervals of about 3 s or longer. However, the temporal sequence of the distributed cortical activity contributing to iCNV generation remains unclear. During iCNV generation, selectively enhanced low-beta activity has been reported. Here we studied the temporal order of activation foci in cortical regions assumed to underlie iCNV generation using source reconstruction of low-beta (13–18 Hz) activity. During the iCNV, elicited by a cued simple reaction-time task, low-beta power peaked first (750 ms after cue onset) in anterior frontal and limbic regions and last (140 ms later) in posterior areas. This activity occurred 3300 ms before target onset and provides evidence for the temporally ordered involvement of both cognitive-control and motor-preparation processes already at early stages during the preparation for speeded action

    A Novel Tetrameric PilZ Domain Structure from Xanthomonads

    Get PDF
    PilZ domain is one of the key receptors for the newly discovered secondary messenger molecule cyclic di-GMP (c-di-GMP). To date, several monomeric PilZ domain proteins have been identified. Some exhibit strong c-di-GMP binding activity, while others have barely detectable c-di-GMP binding activity and require an accessory protein such as FimX to indirectly respond to the c-di-GMP signal. We now report a novel tetrameric PilZ domain structure of XCC6012 from the plant pathogen Xanthomonas campestris pv. campestris (Xcc). It is one of the four PilZ domain proteins essential for Xcc pathogenicity. Although the monomer adopts a structure similar to those of the PilZ domains with very weak c-di-GMP binding activity, it is nevertheless interrupted in the middle by two extra long helices. Four XCC6012 proteins are thus self-assembled into a tetramer via the extra heptad repeat α3 helices to form a parallel four-stranded coiled-coil, which is further enclosed by two sets of inclined α2 and α4 helices. We further generated a series of XCC6012 variants and measured the unfolding temperatures and oligomeric states in order to investigate the nature of this novel tetramer. Discovery of this new PilZ domain architecture increases the complexity of c-di-GMP-mediated regulation
    corecore